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Eﬁ Classitication
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Classification

Query + Web Pages — Best Match

“Apple Computers”

Apple Inc.

From Wikipedia, the free encyclopedia
(Redirected from Apple Computer

Apple Inc., Apple Inc.

Apple s

From Wikipedia, the free encyclopedia

This article is about the fruit. For the electronics and software company,
see Apple Inc.. For other uses, see Apple (disambiguation).

The apple is the pomaceous fruit of
the apple tree, species Malus
domestica in the rose family
Rosaceae. It is one of the most widely
cultivated tree fruits. The tree is small
and deciduous, reaching 3 to 12
metres (9.8 to 39 ft) tall, with a broad,

often densely twiggy crown.I"! The
leaves are alternately arranged simple

Apple




Eﬁ Classification

Sentence — Parse Tree

X Y
S
,,—///\
NP Y
Th DT//\NN VBD/\NP
e screen was ‘ | | | e
The screen was NP PP
a sea of red o~

DT NN IN NP

| | I |
a sea of NN

red



Eﬁ Classitication

Sentence — Translation

Economic growth has slowed down in recent years

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .



Eﬁ Classification

= Three main ideas
= Representation as feature vectors
= Scoring by linear functions
= Learning (the scoring functions) by optimization



¥

Some Definitions

INPUTS

CANDIDATE
SET

CANDIDATE

TRUE
OUTPUT

FEATURE
VECTORS

X3 close the
y(X) {table, door, ...}
y table
>k
y7; door

f(x,y) m010001oooom

/ “close” in x /\ y="door” T

x_="the” A\ y=“door”

x =“the” A y="table” y oceurs in X
-1



Features



Feature Vectors

= Example: web page ranking (not actually classification)

x. = "Apple Computers”

Apple i

From Wikipedia, the free encyclopedia

This article is about the fruit. For the electronics and software company,

see Apple Inc.. For other uses, see Apple (disambiguation).

The apple is the pomaceous fruit of
the apple tree, species Malus
domestica in the rose family
Rosaceae. It is one of the most widely
cultivated tree fruits. The tree is small
and deciduous, reaching 3 to 12
metres (9.8 to 39 ft) tall, with a broad,
often densely twiggy crown.[' The
leaves are alternately arranged simple

Apple

)=[0.3500 ...

Apple Inc. .

From Wikipedia, the free encyclopedia
(R rom Apple Computer

Apple Inc., Apple Inc.

)=1[0.8421 ...



& Block Feature Vectors

= Sometimes, we think of the input as having features, which
are multiplied by outputs to form the candidates

X ... win the election ...
&
uf(X)n [1 O 1 O]
“win” — \“election”
&

... win the election ...

f(SPORTS)=[10100000000 0]

f(POLITICS) =[000010100000

... win the election .

f(OTHER) =[000000001010




E& Non-Block Feature Vectors

= Sometimes the features of candidates cannot be
decomposed in this regular way

= Example: a parse tree’s features may be the productlom/\vp
present in the tree

NP
(2T ) =[0101] N\,
N N V \|]

S

—

f( NP VP )
| P
N V N

r—

\UunUNJ
\ ~ w
V N

» Different candidates will thus often share features
= We'll return to the non-block case later



Linear Models



£ Linear Models: Scoring

= In alinear model, each feature gets a weight w

... win the election ...

f(POLITICS)=[ 0 O O O 1 0 1 0 0 0 0 O

... win the election ...

f(SPORTS)=[ 1 0 1 0 O O O O O O 0 O
w=[1 1-1-2 1-1 1 -2 -2-1-1 1]

= We score hypotheses by multiplying features and weights:
score(y,w) = w ' £(y)

... win the election ...

f(POLITICSY=[ 0 0 0 O 1 O 1 0O O O O O
w=[1l 1-1-2 1-1 1-2-2-1-1 1]

... win the election ...

score(POLITICS, w) =1x14+1x1=2




% Linear Models: Decision Rule

= The linear decision rule:

p'f’@diCt/I;On ( win the election "y W) —

... win the election ...
SCO?“G(SPtORtTS,W) =1x1-

... win the election ...

arg maxw ' £(y)
yeY(x)

F(—-1)x1=0

score(POLITICS,w) =1 x 1 4

... win the election ...

score(OTHER,w) = (—=2) X

<=

L 1x1=2
14+ (=) x1=-3

... win the election ...

p’]"edict’[;On ( win the election oy W) p— POL]T[OS

= We've said nothing about where weights come from



b3 Binary Classification

= |[mportant special case: binary classification
= Classes are y=+1/-1

= Decision boundary is 2
a hyperplane +1

w' f(x) =0 1




Eﬁ Multiclass Decision Rule

= |f more than two classes: w ! f(y1)
] . biggest
= Highest score wins

= Boundaries are more |
complex

= Harder to visualize wTf(y5) \ w ! f(y3)
biggest

biggest

prediction(x;, w) = arg maxw ' £;(y)
yeY



Learning



E{& Learning Classifier Weights

= Two broad approaches to learning weights

= Generative: work with a probabilistic model of the data,
weights are (log) local conditional probabilities

= Advantages: learning weights is easy, smoothing is well-understood,
backed by understanding of modeling

= Discriminative: set weights based on some error-related
criterion

= Advantages: error-driven, often weights which are good for
classification aren’t the ones which best describe the data

= We'll mainly talk about the latter for now



E& How to pick weights?

= Goal: choose “best” vector w given training data
= For now, we mean “best for classification”

= The ideal: the weights which have greatest test set
accuracy / F1 / whatever

= But, don’t have the test set
= Must compute weights from training set

= Maybe we want weights which give best training set
accuracy?



E& Minimize Training Error?

= A loss function declares how costly each mistake is
6i(y) = €@y, y;)

= E.g. 0 loss for correct label, 1 loss for wrong label

= Can weight mistakes differently (e.g. false positives worse than false
negatives or Hamming distance over structured labels)

= We could, in principle, minimize training loss:

min Z l; (arg;nax WTfi(Y)>

(2

= This is a hard, discontinuous optimization problem



% Linear Models: Perceptron

= The perceptron algorithm
= |teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:

= Start with zero weights w
= Visit training instances one by one

= Try to classify *
f(v:
y = arg max WTf(y) (i)
yeY(x)

= |f correct, no change!
= |f wrong: adjust weights

w — w+ f(y))
w—w — f(¥)

f(y")



% Example: “Best” Web Page

W =

2 0 O

x. = "Apple Computers”

Apple

From Wikipedia, the free encyclopedia

f . The apple is the pomaceous fuit of
Z the apple tree, species Malus
domestica in the rose family

cultivated tree fruits. The tree is small
and deciduous, reaching 3 to 12
metres (9.8 to 39 ) tall, with a broad,
often densely twiggy crown ! The
leaves are alternately amranged simple

This article is about the fruit. For the electronics and software company,
see Apple Inc... For other uses, see Apple (disambiguation).

w | )=1[03500 ...

Rosaceae. It is one of the most widely

.5 >€,§‘¢
il

&

Apple Inc.

From Wikipedia, the free encyclopedia
Redirected from Apple Computer

Apple Inc.

Apple Inc.

w—w+f(y;) — £(¥)

w = [1.5

y=1[0.8421 ...

w f=10.3

—~



Eﬁi Examples: Perceptron

= Separable Case
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E{i Examples: Perceptron

= Non-Separable Case

25



E{i Problems with Perceptron

= Perceptron “Goal”: Seperate the training data

Vi,Vy £y w fi(y") > w'f(y)

1. This may be an entire 2. Or it may be impossible
feasible space




}ﬁ Objective Functions

= What do we want from our weights?

= So far: minimize (training) errors:

min Z l; (arg max wai(y)>
: y

(2

or
> step (WTf,L-(y;f) — max WTfi(y))
r YFEY;
- H H o _ ”
This is the “zero-one loss WTEG) — max wTEG)
= Discontinuous, minimizing is NP-complete Y7Y;

= Maximum entropy and SVMs have other
objectives related to zero-one loss



Margin



p 3 Linear Separators

= Which of these linear separators is optimal?

29



E& Classification Margin (Binary)

= Distance of X to separator is its margin, m,
= Examples closest to the hyperplane are support vectors
= Margin y of the separator is the minimum m




E& Classification Margin

= For each example x. and possible mistaken candidate y, we avoid
that mistake by a margin m (y) (with zero-one loss)

m;(y) = w' £;(y5) —w'fi(y)

= Margin y of the entire separator is the minimum m

¥ = min (WTfZ-(y,f) — Max Wsz‘(y})
i YF#Y;

= |tis also the largest y for which the following constraints hold

vi,Vy w ' i(y5) > w' () + v4(y)



Eﬁ Maximum Margin

= Separable SVMs: find the max-margin w

O ify=y?
max bi(y) = . :
||w||=1/y ‘ {1 ify #y;

Y/

Vi, Yy w! fi(y)) >w' fi(y) + 14 (y)

NN

= Can stick this into Matlab and (slowly) get an SVM
= Won’t work (well) if non-separable



E& Max Margin / Small Norm

= Reformulation: find the smallest w which separates data
max -y

Remember this . w|[=1
condition?

Vi,y w! fi(yH) >w' f(y) + 14(y)

= Vscales linearly inw, soif | |w| | isn’t constrained, we can
take any separating w and scale up our margin

v = min [w iy - w EWMI/GG)
LYFY;

= |nstead of fixing the scale of w, we canfixy =1

1
min =||w||?
w2

Vi,y w £(y5) >w'f(y) + 14(y)



Eﬁ Gammatow

Wiz min _|lul[?
| A N [yul[=1
vi,y w f;(y;) 2w §(y) ++4i(y) Vi,y  uw £y > u £;(y) + ()
o min |u]|2
. T * T
(vE) > . :
= 1/||ul] Vi,y u fi(y;) 2w £i(y) + 4(y)
max  1/||ul|? min =|Jul|2
[lyul|=1 v 2

: T * T
iy yu' fi(y]) > yu' §i(y) +v4(y) oy u h(ys) 2w h(y) +4(y)

max 1/||u||?
[yul|=1

Viyy u'fi(yP) > u' £(y) + 4(y)

1
min =||w]|?
w2

Vi,y w £y >w fi(y) + 4(y)



E& Soft Margin Classification

= What if the training set is not linearly separable?

= Slack variables §; can be added to allow misclassification of difficult or
noisy examples, resulting in a soft margin classifier




}f; Maximum Margin

Note: exist other
choices of how to
penalize slacks!

= Non-separable SVMs
= Add slack to the constraints
= Make objective pay (linearly) for slack:

w,§ 2

: T
= Cis called the capacity of the SVM — the smoothing
knob

= Learning:
= Can still stick this into Matlab if you want
= Constrained optimization is hard; better methods!

1
min - |[w|[2+C Y ¢




p 3 Hinge Loss

= We have a constrained minimization
1
r;ﬂv:gnglwll + Z&f
Vi, y, w'fi(yD)+&>w fi(y) + 4(y)

= ...but we can solve for g

Vi, y, & >w £(y)+£4(y) —w fi(y})
Vi, & = max (Wsz'(Y) + f@()’)) —w ' £y

. Givinsz1
i 511wl + € 3 (max (w5 + ) - w TG



E& Why Max Margin?

= Why do this? Various arguments:
= Solution depends only on the boundary cases, or support vectors
= Solution robust to movement of support vectors
= Sparse solutions (features not in support vectors get zero weight)
= Generalization bound arguments
= Works well in practice for many problems

Support vectors




Likelihood



g Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)
= Use the scores as probabilities:

exp(w ' f(y)) - Make positive
>oyrexp(wlt(y’)) - Normalize

P(ylx,w) =

= Maximize the (log) conditional likelihood of training data

exp(w '£;(y})) )

L(w) = log 1:[ P(yi|xi, w) = 22: 109 <Zy exp(w ' f;(y))

=> (Wsz-(yf) —log )~ exp(wai(y)))
) y



}ﬁ Maximum Entropy Il

= Motivation for maximum entropy:
= Connection to maximum entropy principle (sort of)

= Might want to do a good job of being uncertain on noisy
cases...

= ... in practice, though, posteriors are pretty peaked

= Regularization (smoothing)
max Y (wai(yi‘) - |0929XD(Wsz’(Y))) —k||wl|?
1 Yy

min kl[w||?=3" (WTfi(yff) — log Zexp(wai(y))>
y

1



p 3 Maximum Entropy




Loss Comparison



E{i Log-Loss

= |f we view maxent as a minimization problem:

min kllw|[2+>" - (WTf@-(y?) —log Y~ eXD(WTfi(Y)))
] k5

= This minimizes the “log loss” on each example

log(exp(-x)"i?t?gﬂ?bxz =

_ (wai(y;‘) —log ) eXD(WTfi(Y))>
y

step [ w ' £;(y?) — max WTf-(y)>
= O ( Z_ ' YZFY; Z don z




E& Remember SVMs - Hinge Loss

» Consider the per-instance objective: Plot really only right
in binary case

min KllwlP+3 (max (w () + 6() - w HGD)

= This is called the “hinge loss”

= Unlike maxent / log loss, you stop b
gaining objective once the true label b
wins by enough N

= You can start from here and derive the .
SVM obijective B

= Can solve directly with sub-gradient
decent (e.g. Pegasos: Shalev-Shwartz et

T (yH) — Tt
al 07) wi(y]) — max (W ()




E& Max vs “Soft-Max” Margin

= SVMs:
min kliwlP=3 (wT () - max (w () + () )
7 N v
o
You can make this zero
= Maxent:

min k|[w|[*=_ (waxy;k) —logy_exp (waxy)))
= Ver, i N~ Yy~ Jbetter
than a function of the otheéristbiesone
= The SVM tries to beat the augmented runner-up
= The Maxent classifier tries to beat the “soft-max”



Eﬁi Loss Functions: Comparison

= Zero-One Loss

eeeeeeeeeeee
111111111111111111111111
xxxxxxxxxx

> sten (WD) = maxw ()
YFY;

7

= Hinge

3 (waZ-(y;k) — max <WTfi(Y> + ﬁi(y)»

i

* Log

> (WTfi(yfT ) —log " exp (WTfi(Y)>>
Yy

1

T * T
w fz ) — MaXx (w fz
(v1) — max (w' ()



Separators: Comparison




Structure



}fi Handwriting recognition

Sdd4d = brace

Sequential structure

[Slides: Taskar and Klein 05]



}f; CFG Parsing

X Yy
=)
.—/"/\
NP YP
Th DT//\NN VBD/\NP
e screen was ‘ | | | e

The screen was NP PP
a sea of red o~

DT NN IN NP

| | I |
a sea of NN

red

Recursive structure



E& Bilingual Word Alignment

En
X vertu
de
les
What e
What is the anticipated is @ :‘r’:';’::i‘:ions
cost of collecting fees the o

anticipated

under the new pl‘OpOSBl.’ st
' of ®

En vertu de nouvelle collecting ® cout
oy fees ,
propositions, quel est le under zrevu
cout prévu de perception the p:rceptlon
de les droits? new de
proposal

20
; droits
?

Combinatorial structure



¥

Definitions

INPUTS

CANDIDATE
SET

CANDIDATES

TRUE
OUTPUTS

FEATURE
VECTORS

V(x) _
Yy

Y

f(x,y)



E& Structured Models

prediction(x,w) = arg max score(y, w)
yeYV(x)

space of feasible outputs

Assumption:

score(y,w) =w ' f(y) = ZWTf(Yp)
P

Score is a sum of local “part” scores

Parts = nodes, edges, productions



¥

CFG Parsing

S

/\
NP VP

s T T
DT NN VBD NP

I | | T~
The screen was NP PP

D P
DT NN IN NP

I ] I I
a sea of NN

red

fZXXy—>§Rd

#(NP — DT NN)

ey 7 )

#(NN — ‘sea’)



E& Bilingual word alignment

Z WTf(Xjk) = WTf(X, V)

Yik€Y
En
vertu
de
What les
is nouvelle f(x.
the propositions ( J k)
anticipated ,
cost quel = assoclation
_of est o
collecting le = position
fees cout
under prévu = orthography
the de
new perception
proposal de
? le

droits
?



E& Efficient Decoding

= Common case: you have a black box which computes

prediction(x) = arg maxw ' £(y)
yeYV(x)

at least approximately, and you want to learn w

= Easiest option is the structured perceptron [Collins 01]

= Structure enters here in that the search for the best y is typically a
combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)

= Prediction is structured, learning update is not



E& Structured Margin (Primal)

Remember our primal margin objective?

min %HwH% +C Z <m3x (w' fi(y) + ti(y)) — wa,,;(y;k))

Still applies with structured output space!



E& Structured Margin (Primal)

Just need efficient loss-augmented decode:

g = argmax, (w' fi(y) + 4i(y))

min —ku2+cz (W' i) + (7)) —w' fi(y7))

_UJ—|—CZ fz fzyz

Still use general subgradient descent methods! (Adagrad)



E& Structured Margin

= Remember the constrained version of primal:

1, s
it ;WH+C;§

Vi,y w fi(yH) >w! f(y) +4(y) — &



}f; Full Margin: OCR

= We want:
argmaxy w ' f(H&E8,y) = ‘brace”

= Equivalently:
w | f(H&8, "brace”) > w ! f(HZME, " aaaaa”)

wf (R, “brace”) > w f (HREEE ,“aaaab”)
> a lot!

w ' (&I , “brace”) > w ' f (&I, “zzz22"



}ﬁ Parsing example

= We want:

S

arg maxXy WTf(‘Itwasred’ ,Y) — A::a

D

= Equivalently:

S

WTf(‘It was red’ A';&D ) > WTf(‘It was red’, A§B ) 3\

D™F

T \It d' A§B —l_ \It d, A§B
W f( was red, CAD) > W f( was red’, CAD) >a|ot!

Tee . R Teg . A
w ' f(Itwasred, A% ) > w ' f(Itwasred, XF )

J



¥

Alignment example

= We want:

arg maxy w ' f(

= Equivalently:

w ! f(

w ! f(

w ! f(

‘What is the’ 1 ® 1
‘Quel est le’’ 202
u 303

‘What is the’ 1 ® 1
‘Quel est le’’ 202
u 303

‘What is the’ ; : ;
‘Quel estle’’ ; g 3

‘Whatisthe' o) — g
‘Quel est le’ ’ 3 : 3
) 5 WTf(‘Whatisthe’ ;.;) \
'‘Quel estle’ > 3 @3
T ¢'Whatisthe’ 1@l
) > W f(‘Quel estle’ ’ g!g)
i , laal
) > WTfCWhat is the g!g) )

Quel est le’ ’

> a lot!




}ﬁ Cutting Plane

= A constraint induction method [Joachims et al 09]

= Exploits that the number of constraints you actually need per instance
is typically very small

= Requires (loss-augmented) primal-decode only

= Repeat:
» Find the most violated constraint for an instance:

vy  w! fi(yH) >w ! f;(y) + 4i(y)

arg max w ' £(y) + 4(y)

= Add this constraint and resolve the (non-structured) QP (e.g. with
SMO or other QP solver)



}ﬁ Cutting Plane (Dual)

= Some issues:

= Can easily spend too much time solving QPs
= Doesn’t exploit shared constraint structure

= |n practice, works pretty well; fast like perceptron/MIRA,
more stable, no averaging

Summarization Phrase Extraction Parsing
08

e
2

g

=
2

3
S
3

= Adaptive CP
----- MIRA

Bigram Recall

s
S
.,

- - - 2 4 6
Iteration Iteration Iteration



g Likelihood, Structured

L(w) = —k||w[|*+>_ (WTfi(ﬁ) — log ZGXD(WTE(Y)))
¢ &

81(;2:\7) = —2kw+ ) _ (fi(yf?) — ZP(}’Xi)ffz(y})
; y

= Structure needed to compute:
= Log-normalizer

= Expected feature counts

= E.g.if a feature is an indicator of DT-NN then we need to compute posterior
marginals P(DT-NN |sentence) for each position and sum

= Also works with latent variables (more later)



Comparison

90
88
86
84
82

804
40

- 90

.....................

| 0 |

6

9

Constituency Parsing

12 15 18 0 3

=== Cutting Plane
----- Online Cutting Plane

I o Gl Privvial Sobgaiint 815,
= Online Primal Subgradient & Lo
) -== Averaged Perceptron
M1§take s MIRA
Driven | Averaged MIRA (MST built-in)

Llhood Stochastic Gradient Descent

Constituency Parsing, Neural CRF




Option O: Reranking

[e.g. Charniak
and Johnson
05]

Input

X =
“The screen was a sea of red.”

N-Best List
(e.g. n=100)

NP vp

PR —
DT NN VBD NP

| | | —~
The screen was NP PP

NN
DT NN IN NP

I I I
a sea of NN

red
NP vp
T R
DT NN VBD NP
o | —~
The screen was NP PP

Non-Structured
Classification

Baseline DTSN I N
Parser cemn

red
NP vp
T R
DT NN VBD NP
o | —~
The screen was NP PP

NN
DT NN IN NP

I I I
a sea of NN

red
NP vp
o~ —
DT NN VBD NP
o | —
The screen was NP PP

AN P
DT NN IN NP

I I
a sea of NN

red

Output

S
/\
NP A%
S T
DT NN VBD NP
| | | i ™
The screen was NP PP

N PN
DT NN IN NP
| | | |
a sea of NN
|
Ted



}ﬁ Reranking

= Advantages:
= Directly reduce to non-structured case

S

/\
NP VP

T it T e
DT NN VBD NP
f ( I | I T~ ) —
The screen was NP PP
I PN

DT NN IN NP

I | | |
a sea of NN

|
red

= Disadvantages:
= Stuck with errors of baseline parser

= Baseline system must produce n-best lists
= But, feedback is possible [McCloskey, Charniak, Johnson 2006]



b3 M3Ns

= Another option: express all constraints in a packed form
= Maximum margin Markov networks [Taskar et al 03]
» |ntegrates solution structure deeply into the problem structure

= Steps
= Express inference over constraints as an LP
= Use duality to transform minimax formulation into min-min

= Constraints factor in the dual along the same structure as the primal,;
alphas essentially act as a dual “distribution”

= Various optimization possibilities in the dual



E& Example: Kernels

= Quadratic kernels

K(z,2)) = (z-2' 4+ 1)?

. /
=) wwgagm; +2Y aje;+ 1
1,7 1

~
K(y,y) = (f(y) "f(y") + 1)?



E& Non-Linear Separators

= Another view: kernels map an original feature space to some
higher-dimensional feature space where the training set is
(more) separable

A

} N .
°
o e ®: y—>(P(Y) o

° ® °
o |® °
¢ ® ® o © ®
° ® ) o
e o ° g ’ ° >
° ° [ * .. ® e ° *
o ® o
®




}ﬁ Why Kernels?

= Can’t you just add these features on your own (e.g. add all
pairs of features instead of using the quadratic kernel)?
= Yes, in principle, just compute them
= No need to modify any algorithms
= But, number of features can get large (or infinite)

= Some kernels not as usefully thought of in their expanded
representation, e.g. RBF or data-defined kernels [Henderson and Titov
05]

= Kernels let us compute with these features implicitly

= Example: implicit dot product in quadratic kernel takes much less
space and time per dot product

= Of course, there’s the cost for using the pure dual algorithms...



