Algorithms for NLP

Classification I

Sachin Kumar - CMU

Slides: Dan Klein – UC Berkeley, Taylor Berg-Kirkpatrick, Yulia Tsvetkov – CMU

Image → Digit

Document → Category

Query + Web Pages → Best Match

"Apple Computers"

Sentence → Parse Tree

X

The screen was a sea of red

Sentence → Translation

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .

Three main ideas

- Representation as feature vectors
- Scoring by linear functions
- Learning (the scoring functions) by optimization

Some Definitions

INPUTS

$$\mathbf{x}_i$$

close the ____

CANDIDATE

SET

 $\mathcal{Y}(\mathbf{x})$

{table, door, ...}

CANDIDATE

 \mathbf{y}

table

TRUE OUTPUT \mathbf{y}_i^*

door

FEATURE VECTORS

Features

Feature Vectors

Example: web page ranking (not actually classification)

$$x_i$$
 = "Apple Computers"

$$) = [0.3500...]$$

$$) = [0.8421...]$$

Block Feature Vectors

 Sometimes, we think of the input as having features, which are multiplied by outputs to form the candidates

... win the election ... \mathbf{X} "f(x)" "election" ... win the election ... $f(SPORTS) = [1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$... win the election ... POLITICS) = $[0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0]$... win the election ... HER) = [0 0 0 0 0 0 0 1 0 1 0]

Non-Block Feature Vectors

- Sometimes the features of candidates cannot be decomposed in this regular way
- Example: a parse tree's features may be the production vp
 present in the tree

- Different candidates will thus often share features
- We'll return to the non-block case later

Linear Models

Linear Models: Scoring

In a linear model, each feature gets a weight w

We score hypotheses by multiplying features and weights:

$$score(\mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})$$

$$score(POLITICS, \mathbf{w}) = 1 \times 1 + 1 \times 1 = 2$$

Linear Models: Decision Rule

The linear decision rule:

$$prediction(\dots win \ the \ election \dots, \mathbf{w}) = \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\text{arg max}} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})$$
 $\underbrace{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}$ $score(\underbrace{SPORTS}_{SPORTS}, \mathbf{w}) = 1 \times 1 + (-1) \times 1 = 0$ $score(\underbrace{POLITICS}_{DOLITICS}, \mathbf{w}) = 1 \times 1 + 1 \times 1 = 2$ $score(\underbrace{OTHER}_{N}, \mathbf{w}) = (-2) \times 1 + (-1) \times 1 = -3$ $\underbrace{\qquad \qquad \qquad }_{\dots \ win \ the \ election \ \dots}$ $prediction(\dots \ win \ the \ election \ \dots, \mathbf{w}) = \underbrace{POLITICS}_{N}$

We've said nothing about where weights come from

Binary Classification

- Important special case: binary classification
 - Classes are y=+1/-1
 - Decision boundary is a hyperplane

$$\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}) = 0$$

Multiclass Decision Rule

- If more than two classes:
 - Highest score wins
 - Boundaries are more complex
 - Harder to visualize

$$prediction(\mathbf{x}_i, \mathbf{w}) = \underset{\mathbf{y} \in \mathcal{Y}}{arg \max} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

Learning

Learning Classifier Weights

- Two broad approaches to learning weights
- Generative: work with a probabilistic model of the data, weights are (log) local conditional probabilities
 - Advantages: learning weights is easy, smoothing is well-understood, backed by understanding of modeling
- Discriminative: set weights based on some error-related criterion
 - Advantages: error-driven, often weights which are good for classification aren't the ones which best describe the data
- We'll mainly talk about the latter for now

How to pick weights?

- Goal: choose "best" vector w given training data
 - For now, we mean "best for classification"
- The ideal: the weights which have greatest test set accuracy / F1 / whatever
 - But, don't have the test set
 - Must compute weights from training set
- Maybe we want weights which give best training set accuracy?

Minimize Training Error?

A loss function declares how costly each mistake is

$$\ell_i(\mathbf{y}) = \ell(\mathbf{y}, \mathbf{y}_i^*)$$

- E.g. 0 loss for correct label, 1 loss for wrong label
- Can weight mistakes differently (e.g. false positives worse than false negatives or Hamming distance over structured labels)
- We could, in principle, minimize training loss:

$$\min_{\mathbf{w}} \sum_{i} \ell_{i} \left(\arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

This is a hard, discontinuous optimization problem

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error
- The (online) perceptron algorithm:
 - Start with zero weights w
 - Visit training instances one by one
 - Try to classify

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})$$

- If correct, no change!
- If wrong: adjust weights

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{y}_i^*)$$

 $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{f}(\widehat{\mathbf{y}})$

Example: "Best" Web Page

$$\mathbf{w} = [1 \ 2 \ 0 \ 0 \ \dots]$$

 x_i = "Apple Computers"

$$) = [0.3500...]$$

$$\mathbf{w}^{\top}\mathbf{f} = 10.3$$

$$) = [0.8421...]$$

$$\mathbf{w}^{\top}\mathbf{f} = 8.8 \quad \mathbf{y}_{i}^{*}$$

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{y}_i^*) - \mathbf{f}(\widehat{\mathbf{y}})$$

$$\mathbf{w} = [1.5 \quad 1 \quad 2 \quad 1 \quad \dots]$$

Examples: Perceptron

Separable Case

Examples: Perceptron

Non-Separable Case

Problems with Perceptron

Perceptron "Goal": Seperate the training data

$$\forall i, \forall \mathbf{y} \neq \mathbf{y}^i \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}^i) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

1. This may be an entire feasible space

Objective Functions

- What do we want from our weights?
 - So far: minimize (training) errors:

$$\begin{aligned} \min_{\mathbf{w}} & \sum_{i} \ell_{i} \left(\arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right) \\ \text{or} \\ & \sum_{i} step \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right) \end{aligned}$$

- This is the "zero-one loss"
 - Discontinuous, minimizing is NP-complete
- Maximum entropy and SVMs have other objectives related to zero-one loss

$$\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}^{i}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})$$

Margin

Linear Separators

• Which of these linear separators is optimal?

Classification Margin (Binary)

- Distance of \mathbf{x}_i to separator is its margin, \mathbf{m}_i
- Examples closest to the hyperplane are support vectors
- Margin γ of the separator is the minimum m

Classification Margin

• For each example x_i and possible mistaken candidate y, we avoid that mistake by a margin $m_i(y)$ (with zero-one loss)

$$m_i(\mathbf{y}) = \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

• Margin γ of the entire separator is the minimum m

$$\gamma = \min_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

It is also the largest γ for which the following constraints hold

$$\forall i, \forall \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y})$$

Maximum Margin

Separable SVMs: find the max-margin w

$$\max_{\substack{||\mathbf{w}||=1}} \gamma \qquad \qquad \ell_i(\mathbf{y}) = \begin{cases} 0 & \text{if } \mathbf{y} = \mathbf{y}_i^* \\ 1 & \text{if } \mathbf{y} \neq \mathbf{y}_i^* \end{cases}$$

$$\forall i, \forall \mathbf{y} \quad \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y})$$

- Can stick this into Matlab and (slowly) get an SVM
- Won't work (well) if non-separable

Max Margin / Small Norm

Reformulation: find the smallest w which separates data

 γ scales linearly in w, so if ||w|| isn't constrained, we can take any separating w and scale up our margin

$$\gamma = \min_{i, \mathbf{y} \neq \mathbf{y}_i^*} [\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y})] / \ell_i(\mathbf{y})$$

• Instead of fixing the scale of w, we can fix $\gamma = 1$

$$\begin{aligned} \min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 \\ \forall i, \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + 1\ell_i(\mathbf{y}) \end{aligned}$$

Gamma to w

$$\begin{aligned} \max_{\substack{||\mathbf{w}||=1}} \gamma \\ \forall i, \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) &\geq \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) + \gamma \ell_{i}(\mathbf{y}) \\ \mathbf{w} &= \gamma u \\ \gamma &= 1/||u|| \\ \max_{\substack{||\gamma u||=1\\ ||\gamma u||=1}} 1/||u||^{2} \\ \forall i, \mathbf{y} \quad \gamma u^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) &\geq \gamma u^{\top} \mathbf{f}_{i}(\mathbf{y}) + \gamma \ell_{i}(\mathbf{y}) \\ \max_{\substack{||\gamma u||=1\\ ||\gamma u||=1\\ \forall i, \mathbf{y}}} 1/||u||^{2} \\ \forall i, \mathbf{y} \quad u^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) &\geq u^{\top} \mathbf{f}_{i}(\mathbf{y}) + \ell_{i}(\mathbf{y}) \end{aligned}$$

$$\begin{aligned} \min_{\|\mathbf{y}u\|=1} & \|u\|^2 \\ \forall i, \mathbf{y} & u^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq u^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \\ & \min_{u} \|u\|^2 \\ \forall i, \mathbf{y} & u^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq u^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \\ & \min_{u} \frac{1}{2} \|u\|^2 \\ \forall i, \mathbf{y} & u^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq u^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \\ & \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 \\ \forall i, \mathbf{y} & \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \end{aligned}$$

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting in a soft margin classifier

Maximum Margin

Note: exist other choices of how to penalize slacks!

- Non-separable SVMs
 - Add slack to the constraints
 - Make objective pay (linearly) for slack:

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i$$

$$\forall i, \mathbf{y}, \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) + \xi_i \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

 C is called the *capacity* of the SVM – the smoothing knob

- Learning:
 - Can still stick this into Matlab if you want
 - Constrained optimization is hard; better methods!

Hinge Loss

We have a constrained minimization

$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i
\forall i, \mathbf{y}, \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) + \xi_i \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

• ...but we can solve for ξ_i

$$\forall i, \mathbf{y}, \quad \xi_i \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*)$$
$$\forall i, \quad \xi_i = \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*)$$

• Giving $\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \left(\max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \right)$

Why Max Margin?

- Why do this? Various arguments:
 - Solution depends only on the boundary cases, or support vectors
 - Solution robust to movement of support vectors
 - Sparse solutions (features not in support vectors get zero weight)
 - Generalization bound arguments
 - Works well in practice for many problems

Likelihood

Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:

$$\mathsf{P}(\mathbf{y}|\mathbf{x},\mathbf{w}) = \frac{\mathsf{exp}(\mathbf{w}^{\top}\mathbf{f}(\mathbf{y}))}{\sum_{\mathbf{y}'}\mathsf{exp}(\mathbf{w}^{\top}\mathbf{f}(\mathbf{y}'))} \quad \begin{array}{c} \longleftarrow & \mathsf{Make\ positive} \\ \longleftarrow & \mathsf{Normalize} \end{array}$$

Maximize the (log) conditional likelihood of training data

$$L(\mathbf{w}) = \log \prod_{i} P(\mathbf{y}_{i}^{*} | \mathbf{x}_{i}, \mathbf{w}) = \sum_{i} \log \left(\frac{\exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))} \right)$$

$$= \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

Maximum Entropy II

- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked
- Regularization (smoothing)

$$\begin{aligned} & \max_{\mathbf{w}} & \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) - k ||\mathbf{w}||^{2} \\ & \min_{\mathbf{w}} & k ||\mathbf{w}||^{2} - \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) \end{aligned}$$

Maximum Entropy

Loss Comparison

Log-Loss

• If we view maxent as a minimization problem:

$$\min_{\mathbf{w}} \ k||\mathbf{w}||^2 + \sum_i - \left(\mathbf{w}^{\top}\mathbf{f}_i(\mathbf{y}_i^*) - \log\sum_{\mathbf{y}} \exp(\mathbf{w}^{\top}\mathbf{f}_i(\mathbf{y}))\right)$$

This minimizes the "log loss" on each example

$$-\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}))\right)$$

Remember SVMs - Hinge Loss

Consider the per-instance objective:

Plot really only right in binary case

$$\min_{\mathbf{w}} |k||\mathbf{w}||^2 + \sum_{i} \left(\max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(y) \right) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \right)$$

- This is called the "hinge loss"
 - Unlike maxent / log loss, you stop gaining objective once the true label wins by enough
 - You can start from here and derive the SVM objective
 - Can solve directly with sub-gradient decent (e.g. Pegasos: Shalev-Shwartz et al 07)

$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}
eq \mathbf{y}_i^*} \left(\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})
ight)$$

Max vs "Soft-Max" Margin

SVMs:

$$\min_{\mathbf{w}} k||\mathbf{w}||^2 - \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) \right)$$

You can make this zero

Maxent:

• Ver,
$$k||\mathbf{w}||^2 - \sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) \right) \right)$$
 better than a function of the other these theorem.

- The SVM tries to beat the augmented runner-up
- The Maxent classifier tries to beat the "soft-max"

Loss Functions: Comparison

Zero-One Loss

$$\sum_{i} step \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

Hinge

$$\sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) + \ell_{i}(\mathbf{y}) \right) \right)$$

Log

$$\sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) \right) \right)$$

$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}
eq \mathbf{y}_i^*} \left(\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})\right)$$

Separators: Comparison

Structure

Handwriting recognition

×

Sequential structure

[Slides: Taskar and Klein 05]

CFG Parsing

Recursive structure

Bilingual Word Alignment

X

What is the anticipated cost of collecting fees under the new proposal?

En vertu de nouvelle propositions, quel est le côut prévu de perception de les droits?

Combinatorial structure

Definitions

 \mathbf{x}_i **INPUTS**

CANDIDATE

SET

$$\mathcal{Y}(\mathbf{x})$$

CANDIDATES

TRUE OUTPUTS

$$\mathbf{y}_i^*$$

FEATURE VECTORS

Structured Models

$$prediction(\mathbf{x}, \mathbf{w}) = arg \max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} space of feasible outputs$$

Assumption:

$$score(\mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}) = \sum_{p} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}_{p})$$

Score is a sum of local "part" scores

Parts = nodes, edges, productions

CFG Parsing

Bilingual word alignment

Efficient Decoding

Common case: you have a black box which computes

$$prediction(x) = arg \max_{y \in \mathcal{Y}(x)} \mathbf{w}^{\top} \mathbf{f}(y)$$

at least approximately, and you want to learn w

- Easiest option is the structured perceptron [Collins 01]
 - Structure enters here in that the search for the best y is typically a combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)
 - Prediction is structured, learning update is not

Structured Margin (Primal)

Remember our primal margin objective?

$$\min_{w} \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i} \left(\max_{y} \left(w^{\top} f_{i}(y) + \ell_{i}(y) \right) - w^{\top} f_{i}(y_{i}^{*}) \right)$$

Still applies with structured output space!

Structured Margin (Primal)

Just need efficient loss-augmented decode:

$$\bar{y} = \operatorname{argmax}_{y} \left(w^{\top} f_i(y) + \ell_i(y) \right)$$

$$\min_{w} \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i} \left(w^{\top} f_{i}(\bar{y}) + \ell_{i}(\bar{y}) - w^{\top} f_{i}(y_{i}^{*}) \right)$$

$$\nabla_w = w + C \sum_i \left(f_i(\bar{y}) - f_i(y_i^*) \right)$$

Still use general subgradient descent methods! (Adagrad)

Structured Margin

Remember the constrained version of primal:

$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$

$$\forall i, \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) - \xi_i$$

Full Margin: OCR

We want:

$$\text{arg max}_{\mathbf{y}} \ \mathbf{w}^{\top} \mathbf{f}(\mathbf{brace}, \mathbf{y}) = \text{``brace''}$$

Equivalently:

Parsing example

We want:

arg max
$$_{y}$$
 $w^{ op}f($ 'It was red' $,y)$ $=$ $^{\S}_{c^{\bullet}p}$

• Equivalently:

Alignment example

We want:

$$\text{arg max}_{\mathbf{y}} \ \mathbf{w}^{\top} \mathbf{f}(\ \text{`What is the'}, \mathbf{y}) \ = \ \begin{array}{c} \mathbf{1} \bullet \mathbf{1} \\ \mathbf{2} \bullet \mathbf{2} \\ \mathbf{3} \bullet \mathbf{3} \end{array}$$

Equivalently:

$$\begin{array}{c} w^\top f(\begin{subarray}{c} \begin{subarray}{c} \begin{subar$$

Cutting Plane

- A constraint induction method [Joachims et al 09]
 - Exploits that the number of constraints you actually need per instance is typically very small
 - Requires (loss-augmented) primal-decode only

Repeat:

Find the most violated constraint for an instance:

$$\forall \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

$$\arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

 Add this constraint and resolve the (non-structured) QP (e.g. with SMO or other QP solver)

Cutting Plane (Dual)

Some issues:

- Can easily spend too much time solving QPs
- Doesn't exploit shared constraint structure
- In practice, works pretty well; fast like perceptron/MIRA, more stable, no averaging

Likelihood, Structured

$$L(\mathbf{w}) = -k||\mathbf{w}||^2 + \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))\right)$$
$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = -2k\mathbf{w} + \sum_{i} \left(\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_{i})\mathbf{f}_{i}(\mathbf{y})\right)$$

- Structure needed to compute:
 - Log-normalizer
 - Expected feature counts
 - E.g. if a feature is an indicator of DT-NN then we need to compute posterior marginals P(DT-NN|sentence) for each position and sum
- Also works with latent variables (more later)

Comparison

Margin		Cutting Plane
		Online Cutting Plane
		Online Primal Subgradient & L_1
	_	Online Primal Subgradient & L_2
Mistake Driven		Averaged Perceptron
		MIRA
		Averaged MIRA (MST built-in)
Llhood	_	Stochastic Gradient Descent

Option 0: Reranking

[e.g. Charniak and Johnson 05]

Input

N-Best List (e.g. n=100)

Output

x = "The screen was a sea of red."

Reranking

Advantages:

Directly reduce to non-structured case

Disadvantages:

- Stuck with errors of baseline parser
- Baseline system must produce n-best lists
- But, feedback is possible [McCloskey, Charniak, Johnson 2006]

M3Ns

- Another option: express all constraints in a packed form
 - Maximum margin Markov networks [Taskar et al 03]
 - Integrates solution structure deeply into the problem structure

Steps

- Express inference over constraints as an LP
- Use duality to transform minimax formulation into min-min
- Constraints factor in the dual along the same structure as the primal;
 alphas essentially act as a dual "distribution"
- Various optimization possibilities in the dual

Example: Kernels

Quadratic kernels

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + 1)^{2}$$

$$= \sum_{i,j} x_{i} x_{j} x_{i}' x_{j}' + 2 \sum_{i} x_{i} x_{i}' + 1$$

$$\downarrow \downarrow \downarrow$$

$$K(\mathbf{y}, \mathbf{y}') = (\mathbf{f}(\mathbf{y})^{\top} \mathbf{f}(\mathbf{y}') + 1)^{2}$$

Non-Linear Separators

 Another view: kernels map an original feature space to some higher-dimensional feature space where the training set is (more) separable

Why Kernels?

- Can't you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
 - Yes, in principle, just compute them
 - No need to modify any algorithms
 - But, number of features can get large (or infinite)
 - Some kernels not as usefully thought of in their expanded representation, e.g. RBF or data-defined kernels [Henderson and Titov 05]
- Kernels let us compute with these features implicitly
 - Example: implicit dot product in quadratic kernel takes much less space and time per dot product
 - Of course, there's the cost for using the pure dual algorithms...